Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1344761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487529

RESUMO

Background: The importance of CD11b/CD18 expression in neutrophil effector functions is well known. Beyond KINDLIN3 and TALIN1, which are involved in the induction of the high-affinity binding CD11b/CD18 conformation, the signaling pathways that orchestrate this response remain incompletely understood. Method: We performed an unbiased screening method for protein selection by biotin identification (BioID) and investigated the KINDLIN3 interactome. We used liquid chromatography with tandem mass spectrometry as a powerful analytical tool. Generation of NB4 CD18, KINDLIN3, or SKAP2 knockout neutrophils was achieved using CRISPR-Cas9 technology, and the cells were examined for their effector function using flow cytometry, live cell imaging, microscopy, adhesion, or antibody-dependent cellular cytotoxicity (ADCC). Results: Among the 325 proteins significantly enriched, we identified Src kinase-associated phosphoprotein 2 (SKAP2), a protein involved in actin polymerization and integrin-mediated outside-in signaling. CD18 immunoprecipitation in primary or NB4 neutrophils demonstrated the presence of SKAP2 in the CD11b/CD18 complex at a steady state. Under this condition, adhesion to plastic, ICAM-1, or fibronectin was observed in the absence of SKAP2, which could be abrogated by blocking the actin rearrangements with latrunculin B. Upon stimulation of NB4 SKAP2-deficient neutrophils, adhesion to fibronectin was enhanced whereas CD18 clustering was strongly reduced. This response corresponded with significantly impaired CD11b/CD18-dependent NADPH oxidase activity, phagocytosis, and cytotoxicity against tumor cells. Conclusion: Our results suggest that SKAP2 has a dual role. It may restrict CD11b/CD18-mediated adhesion only under resting conditions, but its major contribution lies in the regulation of dynamic CD11b/CD18-mediated actin rearrangements and clustering as required for cellular effector functions of human neutrophils.


Assuntos
Neutrófilos , Quinases da Família src , Humanos , Neutrófilos/metabolismo , Quinases da Família src/metabolismo , Fibronectinas/metabolismo , Antígenos CD18/metabolismo , Adesão Celular , Actinas/metabolismo , Fosfoproteínas/metabolismo , Antígeno de Macrófago 1/metabolismo
2.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138970

RESUMO

Since the successful introduction of checkpoint inhibitors targeting the adaptive immune system, monoclonal antibodies inhibiting CD47-SIRPα interaction have shown promise in enhancing anti-tumor treatment efficacy. Apart from SIRPα, neutrophils express a broad repertoire of inhibitory receptors, including several members of the sialic acid-binding receptor (SIGLEC) family. Here, we demonstrate that interaction between tumor cell-expressed sialic acids and SIGLEC-5/14 on neutrophils inhibits antibody-dependent cellular cytotoxicity (ADCC). We observed that conjugate formation and trogocytosis, both essential processes for neutrophil ADCC, were limited by the sialic acid-SIGLEC-5/14 interaction. During neutrophil-tumor cell conjugate formation, we found that inhibition of the interaction between tumor-expressed sialic acids and SIGLEC-5/14 on neutrophils increased the CD11b/CD18 high affinity conformation. By dynamic acoustic force measurement, the binding between tumor cells and neutrophils was assessed. The interaction between SIGLEC-5/14 and the sialic acids was shown to inhibit the CD11b/CD18-regulated binding between neutrophils and antibody-opsonized tumor cells. Moreover, the interaction between sialic acids and SIGLEC-5/14-consequently hindered trogocytosis and tumor cell killing. In summary, our results provide evidence that the sialic acid-SIGLEC-5/14 interaction is an additional target for innate checkpoint blockade in the tumor microenvironment.


Assuntos
Neoplasias , Neutrófilos , Humanos , Neutrófilos/metabolismo , Ácido N-Acetilneuramínico , Antígeno de Macrófago 1 , Neoplasias/tratamento farmacológico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral
3.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35728876

RESUMO

BACKGROUND: Neutrophils kill antibody-opsonized tumor cells using trogocytosis, a unique mechanism of destruction of the target plasma. This previously unknown cytotoxic process of neutrophils is dependent on antibody opsonization, Fcγ receptors and CD11b/CD18 integrins. Here, we demonstrate that tumor cells can escape neutrophil-mediated cytotoxicity by calcium (Ca2+)-dependent and exocyst complex-dependent plasma membrane repair. METHODS: We knocked down EXOC7 or EXOC4, two exocyst components, to evaluate their involvement in tumor cell membrane repair after neutrophil-induced trogocytosis. We used live cell microscopy and flow cytometry for visualization of the host and tumor cell interaction and tumor cell membrane repair. Last, we reported the mRNA levels of exocyst in breast cancer tumors in correlation to the response in trastuzumab-treated patients. RESULTS: We found that tumor cells can evade neutrophil antibody-dependent cellular cytotoxicity (ADCC) by Ca2+-dependent cell membrane repair, a process induced upon neutrophil trogocytosis. Absence of exocyst components EXOC7 or EXOC4 rendered tumor cells vulnerable to neutrophil-mediated ADCC (but not natural killer cell-mediated killing), while neutrophil trogocytosis remained unaltered. Finally, mRNA levels of exocyst components in trastuzumab-treated patients were inversely correlated to complete response to therapy. CONCLUSIONS: Our results support that neutrophil attack towards antibody-opsonized cancer cells by trogocytosis induces an active repair process by the exocyst complex in vitro. Our findings provide insight to the possible contribution of neutrophils in current antibody therapies and the tolerance mechanism of tumor cells and support further studies for potential use of the exocyst components as clinical biomarkers.


Assuntos
Neoplasias da Mama , Neutrófilos , Anticorpos , Citotoxicidade Celular Dependente de Anticorpos , Feminino , Humanos , RNA Mensageiro , Trastuzumab/farmacologia
4.
J Immunother Cancer ; 9(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34049929

RESUMO

BACKGROUND: Current immunotherapy for patients with high-risk neuroblastoma involves the therapeutic antibody dinutuximab that targets GD2, a ganglioside expressed on the majority of neuroblastoma tumors. Opsonized tumor cells are killed through antibody-dependent cellular cytotoxicity (ADCC), a process mediated by various immune cells, including neutrophils. The capacity of neutrophils to kill dinutuximab-opsonized tumor cells can be further enhanced by granulocyte-macrophage colony-stimulating factor (GM-CSF), which has been shown in the past to improve responses to anti-GD2 immunotherapy. However, access to GM-CSF (sargramostim) is limited outside of Northern America, creating a high clinical need for an alternative method to stimulate dinutuximab responsiveness in the treatment of neuroblastoma. In this in vitro study, we have investigated whether clinically well-established granulocyte colony-stimulating factor (G-CSF) can be a potentially suitable alternative for GM-CSF in the dinutuximab immunotherapy regimen of patients with neuroblastoma. METHODS: We compared the capacity of neutrophils stimulated either in vitro or in vivo with GM-CSF or G-CSF to kill dinutuximab-opsonized GD2-positive neuroblastoma cell lines and primary patient tumor material. Blocking experiments with antibodies inhibiting either respective Fc gamma receptors (FcγR) or neutrophil integrin CD11b/CD18 demonstrated the involvement of these receptors in the process of ADCC. Flow cytometry and live cell microscopy were used to quantify and visualize neutrophil-neuroblastoma interactions. RESULTS: We found that G-CSF was as potent as GM-CSF in enhancing the killing capacity of neutrophils towards neuroblastoma cells. This was observed with in vitro stimulated neutrophils, and with in vivo stimulated neutrophils from both patients with neuroblastoma and healthy donors. Enhanced killing due to GM-CSF or G-CSF stimulation was consistent regardless of dinutuximab concentration, tumor-to-neutrophil ratio and concentration of the stimulating cytokine. Both GM-CSF and G-CSF stimulated neutrophils required FcγRIIa and CD11b/CD18 integrin to perform ADCC, and this was accompanied by trogocytosis of tumor material by neutrophils and tumor cell death in both stimulation conditions. CONCLUSIONS: Our preclinical data support the use of G-CSF as an alternative stimulating cytokine to GM-CSF in the treatment of high-risk neuroblastoma with dinutuximab, warranting further testing of G-CSF in a clinical setting.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Citotoxicidade Imunológica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Neuroblastoma/tratamento farmacológico , Neutrófilos/efeitos dos fármacos , Antígeno CD11b/metabolismo , Antígenos CD18/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Humanos , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Receptores de IgG/metabolismo , Trogocitose/efeitos dos fármacos , Microambiente Tumoral
5.
Cancer Immunol Res ; 9(2): 147-155, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33355195

RESUMO

The CD47-signal regulatory protein-alpha (SIRPα) immune checkpoint constitutes a therapeutic target in cancer, and initial clinical studies using inhibitors of CD47-SIRPα interactions in combination with tumor-targeting antibodies show promising results. Blockade of CD47-SIRPα interaction can promote neutrophil antibody-dependent cellular cytotoxicity (ADCC) toward antibody-opsonized targets. Neutrophils induce killing of antibody-opsonized tumor cells by a process identified as trogoptosis, a necrotic/lytic type of cancer cell death that involves trogocytosis, the antibody-mediated endocytic acquisition of cancer membrane fragments by neutrophils. Both trogocytosis and killing strictly depend on CD11b/CD18-(Mac-1)-mediated neutrophil-cancer cell conjugate formation, but the mechanism by which CD47-SIRPα checkpoint disruption promotes cytotoxicity has remained elusive. Here, by using neutrophils from patients with leukocyte adhesion deficiency type III carrying FERMT3 gene mutations, hence lacking the integrin-associated protein kindlin3, we demonstrated that CD47-SIRPα signaling controlled the inside-out activation of the neutrophil CD11b/CD18-integrin and cytotoxic synapse formation in a kindlin3-dependent fashion. Our findings also revealed a role for kindlin3 in trogocytosis and an absolute requirement in the killing process, which involved direct interactions between kindlin3 and CD18 integrin. Collectively, these results identified a dual role for kindlin3 in neutrophil ADCC and provide mechanistic insights into the way neutrophil cytotoxicity is governed by CD47-SIRPα interactions.


Assuntos
Antígeno CD11b/imunologia , Antígenos CD18/imunologia , Antígeno CD47/antagonistas & inibidores , Integrinas/metabolismo , Neutrófilos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos de Diferenciação/imunologia , Antígeno CD47/imunologia , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/imunologia , Defeitos Congênitos da Glicosilação/patologia , Humanos , Proteínas de Membrana/genética , Mutação , Proteínas de Neoplasias/genética
6.
Front Immunol ; 11: 2100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983165

RESUMO

Over the last decades, cancer immunotherapies such as checkpoint blockade and adoptive T cell transfer have been a game changer in many aspects and have improved the treatment for various malignancies considerably. Despite the clinical success of harnessing the adaptive immunity to combat the tumor, the benefits of immunotherapy are still limited to a subset of patients and cancer types. In recent years, neutrophils, the most abundant circulating leukocytes, have emerged as promising targets for anti-cancer therapies. Traditionally regarded as the first line of defense against infections, neutrophils are increasingly recognized as critical players during cancer progression. Evidence shows the functional plasticity of neutrophils in the tumor microenvironment, allowing neutrophils to exert either pro-tumor or anti-tumor effects. This review describes the tumor-promoting roles of neutrophils, focusing on their myeloid-derived suppressor cell activity, as well as their role in tumor elimination, exerted mainly via antibody-dependent cellular cytotoxicity. We will discuss potential approaches to therapeutically target neutrophils in cancer. These include strategies in humans to either silence the pro-tumor activity of neutrophils, or to activate or enhance their anti-tumor functions. Redirecting neutrophils seems a promising approach to harness innate immunity to improve treatment for cancer patients.


Assuntos
Neoplasias/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Imunidade Adaptativa , Animais , Citotoxicidade Celular Dependente de Anticorpos , Divisão Celular/imunologia , Movimento Celular/imunologia , Humanos , Imunidade Inata , Imunoterapia/métodos , Camundongos , Células Supressoras Mieloides/imunologia , Invasividade Neoplásica/imunologia , Metástase Neoplásica/imunologia , Neoplasias/irrigação sanguínea , Neoplasias/terapia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Neovascularização Patológica/imunologia , Microambiente Tumoral/imunologia
7.
Front Immunol ; 11: 619925, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33679708

RESUMO

Neutrophils are the most prevalent leukocytes in the human body. They have a pivotal role in the innate immune response against invading bacterial and fungal pathogens, while recent emerging evidence also demonstrates their role in cancer progression and anti-tumor responses. The efficient execution of many neutrophil effector responses requires the presence of ß2 integrins, in particular CD11a/CD18 or CD11b/CD18 heterodimers. Although extensively studied at the molecular level, the exact signaling cascades downstream of ß2 integrins still remain to be fully elucidated. In this review, we focus mainly on inside-out and outside-in signaling of these two ß2 integrin members expressed on neutrophils and describe differences between various neutrophil stimuli with respect to integrin activation, integrin ligand binding, and the pertinent differences between mouse and human studies. Last, we discuss how integrin signaling studies could be used to explore the therapeutic potential of targeting ß2 integrins and the intracellular signaling cascade in neutrophils in several, among other, inflammatory conditions in which neutrophil activity should be dampened to mitigate disease.


Assuntos
Antígenos CD18/fisiologia , Ativação de Neutrófilo/fisiologia , Neutrófilos/metabolismo , Transdução de Sinais , Animais , Anti-Inflamatórios/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/fisiologia , Antígeno CD11a/química , Antígeno CD11a/fisiologia , Antígeno CD11b/química , Antígeno CD11b/fisiologia , Antígenos CD18/química , Adesão Celular/fisiologia , Quimiocinas/farmacologia , Quimiocinas/fisiologia , Quimiotaxia de Leucócito/fisiologia , Proteínas do Citoesqueleto/metabolismo , Dimerização , Humanos , Inflamação , Camundongos , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fagocitose/fisiologia , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Selectinas/fisiologia , Especificidade da Espécie , Talina/metabolismo , Migração Transendotelial e Transepitelial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...